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ABSTRACT

This paper examines a recently developed nonlinear control method, sliding mode

control, as a means of advancing the achievable performance of space-based precision

pointing and tracking systems that use nonlinear magnetic actuators. The appeal of

sliding mode control is its direct treatment of system nonlinearities. Analytic results

indicate that sliding mode control improves performance compared to linear control

approaches. In order to realize these performance improvements, precise knowledge of the

plant is required. Additionally, the interaction of an estimation scheme and the sliding

mode controller has not been fully examined in the literature. Estimation schemes were

designed for use with this sliding mode controller that do not seriously degrade system

performance. We designed and built a laboratory testbed to determine the feasibility of

utilizing sliding mode control in these types of applications. Using this testbed,

experimental verification of our analyses is ongoing.

INTRODUCTION

Space-based precision pointing and tracking systems typically operate in

environments that require high levels of vibration isolation to achieve desired tracking

performance. Consider the system illustrated in Fig. 1. The "tracking body" could be a

telescope or a laser. The tracking body must rapidly point from target to target, a

maneuver commonly referred to as slewing. A one meter diameter target located 10,000

km from the tracking body mandates slewing accuracies on the order of 100 nanoradians.

The tracking body, however, is attached to a vibrating space structure. Disturbance

vibrations are typically caused by machinery on the space structure. Any disturbance

vibration that is transmitted to the tracking body can cause imprecision in the slewing
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Figure 1. Space-Based Precision Pointing and Tracking

maneuver. Even a small amount of disturbance vibration can be catastrophic to the

mission because the slewing requirements are extremely stringent. For example, the

SAVI (Space Active Vibration Isolation) program is an earth-based full-scale test-bed of

a magnetic suspension for pointing and slewing a 6000 kg mirror. Specifications are 80

db of isolation from 1 Hz to 2 kI-Iz 6(._.

Nonlinear magnetic actuators, because of their high force per mass capability, are

a promising means of achieving the required isolation while providing forces or torques

for slewing. An inherent feature of the actuators, however, is coupling between the

magnetic gap and the force. This coupling produces an undesirable path between

disturbance vibrations and precision tracking forces. To date, vibration isolation systems

utilizing these actuators face limitations on achievable isolation, especially under load, if

slewing.

The actuators consist of a ferromagnetic material wrapped with a current-carrying

coil (Fig. 2). Ferromagnetic material is also attached to the tracking body. An attractive

force is exerted by the actuator on the tracking body. An equal and opposite force is

exerted by the tracking body on the space structure, but this effect is negligible because

the space structure is typically much more massive than the tracking body. Because the

force on the tracking body is attractive force only, two actuators per degree of freedom are

required. Force couples produce control torques. To first order, the force is proportional

to the square of the ratio of current to gap. Thus, it is nonlinear in both current and gap.

Another interesting feature is that the actuator is open-loop unstable. Indeed if the

tracking body is initially in equilibrium at the centered position with equal currents in the

actuators, and it is perturbed towards one of the actuators, at fixed current, the attractive

force toward this actuator will increase, which is a destabilizing effect. We can also see

this effect if we linearize the force-gap-current relation as is shown in the figure. For
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destabilizing force proportional to the displacement. For the suspension system, there is

an associated unstable frequency determined by the unstable spring stiffness and the

tracking body mass.
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Figure 2. Electromagnetic Actuator

A variety of options are available for use in the control of this type of magnetic

suspension. These include gap feedback, flux feedback, and force feedback. Flux feedback

is being used in the SAVI program. The motivation in this type of control scheme is the

fact that when the force is linearized about a bias flux, the relationship between

incremental force and flux is linear. The primary drawback of this approach arises

because the flux sensor measures flux at the point where the sensor is located. In reality,

the flux varies along the face of the actuators, and this variation looks like a modelling

error in the flux-force relationship. This in turn may increase the tracking (slewing) error

of the system. Gap sensors, on the other hand can give very precise information about

the force because the precise gap sensors are available and the geometry of the actuator

is fixed and known. However, as shown, the relationship between force, current and gap

is nonlinear. The linearized relationship can be used in a linear control system such as

the one shown in Fig. 3. A linear control system with inertial position feedback, however,

can not meet the strict specifications of this type of problem. An examination of a linear

control approach will illustrate the engineering difficulties of precision pointing and

tracking systems. Space structure vibration is an output disturbance to this control

system. Space structure motion (disturbance vibration) changes the gap between the

structure and the tracking body causing an undesirable path, via the actuator, between

the vibration disturbance and inertial position. In these applications, broad frequency

range disturbances are present up to typical closed loop system bandwidths.
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Linearized Approximation of Nonlinear Actuator
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Figure 3. Block Diagram of Phase Lead Controller

At the open loop crossover frequency, the magnitude of the transfer function
between inertial position and disturbance is dependent only on the unstable spring

frequency and the crossover frequency, independent of the type of linear controller. The
magnitude of this transfer function should be small for good tracking performance. As
Eq. (1) shows, we have two options, increase the crossover frequency of the system or
decrease the spring frequency.

At crossover (c0c)
Position (o_

: (1)
Disturbance

c_U = Actuator unstablefrequency

a)c= Crossover frequency

The problem isthat we are limitedinboth ofthese options.More precisely,the unstable
spring frequency,which is a resultof the couplingbetween forceand gap can not be

decreased indefinitelybecause oflimitationson actuatorpower and size.The crossover

frequency islimitedas wellby system bandwidth constraints.For example in the SAVI
program, flexiblestructuremodes ofthe mirror support structurestartat 10-15 Hz. A

control system with a higher bandwidth would excitethese modes and is therefore

undesirable. The key point is that for the vibrationisolationlevelsrequired formany

typesofprecisionpointingand trackingsystems,itisimpossibletomeet the specifications
with linearcontrollers.

We examined slidingmode control,a recentlydeveloped nonlinear controlmethod

5_, as an alternativeapproach that has the potentialto achieve higher levelsof
performance than are currentlyattainable. Fig.4 isa rathercomplicatedblock diagram

illustratingthe slidingmode approach. The controlgoal is to have the tracking body
(plant)followa desired (reference)inertialtrajectory.Nonlinear magnetic actuators

produce forceson the plant changing it'sinertialposition.Vibration disturbancesofthe

space structure change the gap between the tracking body and the space structure
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producing the undesirable vibration path between vibration disturbance and inertial
position. The sliding mode controller has the potential to achieve better performance than
linear controllers because it's structure directly compensates for this vibration path. A

set of control forces is calculated based on the difference between the estimated inertial

state and the desired inertial state. A feedfoward term is also included. Gap sensor
measurements are used in a nonlinear plant inversion of the gap-force-current relation
to obtain control currents.

IL_Tlm
_NlrlUL

VtLOal'T

Figure 4. Sliding Mode Control Block Diagram

Lyaponov analysisguarantees that the controllerwith perfectstatefeedback will

be stablein the presence ofbounded modelling uncertaintyand disturbances.The sliding
mode control '"valancecondition" approximates the tracking error along a certain

trajectoryand is dependent on the modelling uncertainty bounds. The aim of the
controlleristocancelout the effectsof the unwanted vibrationdisturbancepath. While

the sliding mode control structure eliminates the weaknesses in the linear control
approach, for high levels of performance, this approach depends strongly on having highly
accurate plant models as well as precise measurement devices and a well-designed
estimation scheme.

TEST-BED DESCRIPTION AND SYSTEM MODELLING

Testbed Descriptio.n
The goal of the testbed is to capture the important features of the space-based

precision pointing and tracking application in earth-based, laboratory-sized hardware. As
shown in Fig. 5, the tracking body consists of a 7 kg mass supported on an air table,
which eliminates the gravity-biasing effects. This mass, which will be called the isolated
mass, has three degrees of freedom; two translational labelled x and y and one angular,

labelled O. Magnetic actuators that produce forces on the isolated mass are mounted on
moving rafts. Four E-core actuators are used for both translational x (tracking/slew)
direction and for the angular 0 direction. Two pot core actuators are used to provide
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forces in the ± y direction. Sensors include gap sensors, an angular velocity sensor, an

accelerometer, and LVDT railposition sensors 7(_.

Rail
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Figure 5. Top View of Testbed

The baseline test scenario consists of large amplitude (many times the nominal

magnetic gap), low frequency motion in the x-direction.The moving rails,under separate

linearposition control loops,simulate the vibrating space structure in addition to allowing
the slew motion. Disturbance vibrations can be introduced in the x and 0 directions.

Angular disturbances are input by differentiallyexciting the rails.Simulation results in

this paper consist of single frequency tracking under the presence of a single frequency

angular vibration disturbance. Broadband disturbances should be considered at a later

time with the acquisition of a better angular sensor. Performance measures of rms

tracking error and vibration isolationare considered.

System Modellin_ Dynamics

By applying Newton's laws, we can obtain the dynamic equations of motion of the

isolated mass (Eq. (2),(3),and (4)).
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mi =(FIA- F m) +(F2A- F_s)

=( °hI*_ - °_ I*2s

L2(gL_ + C,) 2 2(gin + C f) 2

+

2(g2A + C,) 2

(2)

IO = L (FL_-F m) - L (F_ - F2B)

2(g_ + C.) 2 2(g m + C f) 2

I_ _I2 _ c_I22 ]2(g2A+Of)2 2(g2s+Of)2

(3)

m j? = FSA - Fss

: % I_

2(g3A +C,) 2

%

2 (g3B÷Cy)2

(4)

where

m

I

FL_

IL_

gL_

C,
L

= mass

= Moment of inertia

= Force actuator LA

ffi Current actuator 1A

= Gap actuator 1A

= Modelling constant

= Moment arm (m)

The controller for the slew (x) direction and the angular (0) direction is designed

as if they were decoupled. This is due to the fact that there are more inputs than degrees

of freedom. Referring to Eq. (2) and (3), we see the slew direction is controlled by an

addition of (F_ - F,B) and (F2A - F2s) while angle 0 as controlled by the difference. The y

axis is decoupled from both the x and the 0 axes.

Based on more detailed magnetic actuator modelling as well as experimental

actuator testing, the x, 0 axis actuator models are accurate to within 1% for the range of

gaps we run in our experiments. This bound is used in the sliding mode controller design
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System Modelling: Kinematics
Kinematic relationships are used in the estimation scheme. At low frequencies, the

accelerometer and angular velocity sensor do not provide good information. Low frequency

state estimates can be obtained based on gap sensor and LVDT rail measurements by

manipulating the kinematic relationships presented below.
A schematic representation of the test-bed geometry at two different positions of

the isolated mass and rails is shown in Fig. 6. Small angle approximations are used to

obtain the following relations. An expression for each gap can be obtained in terms of

inertial position of the isolated mass, x, the inertial angular position of the isolated mass,

0, the nominal (centered) gap, go and a position of the associated linear actuator rail, XLAL

or XLAR(Eq. (5-8)).

gL_ = (XLAL+gO)- (X + L0)

glB = -(XLAL - go) ÷ (X ÷ L0)

g2_ - (XL_ * go) - (X - L0)

g28 = (X - LS) - (XL_ - go)

(5)

(6)

(7)

(8)

SLIDING MODE CONTROLLER DESIGN

The controller must choose six currents based on gap measurements, position

errors, velocity errors and desired accelerations. Following the standard sliding mode
control approach 2(_.5), a sliding surface, s is defined for each degree of freedom (Eq. (9-
11)).

s_-(±-i d) ÷_x -x d) (9)

So ffi(_ - Od)÷ x(o - Od)

S, ffi(y - Yd) ÷ _'(Y - Y_)

(10)

(11)

where

x, Xd, t = X position, desired x position, x velocity
Y, Yd, _ = Y position, desired y position, y velocity
0, 0d, 0 -- 0 position, desired 0 position, 0 velocity

The control law for each degree of freedom is chosen so that the appropriate s2 remains

a Lyaponov function of the system subject to bounded disturbances and modelling errors.

By using a time-varying boundary layer concept, the control laws avoid high frequency
control actions that could excite unmodelled dynamics. The boundary layer concept is an

interpolation of the control laws about the s=0 surface. The interpolation is made time-

varying to achieve the optimum tradeoff between tracking error and parametric

uncertainty along a desired trajectory. The basic philosophy behind sliding mode control
is that when the system is outside an invariant region, the s=0 ± boundary layer surface,
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Figure 6. Testbed Kinematics

the control action is designed to be such that Eq. (12)

d s2<0
dt

(12)

or equivalently Eq. (13) (11>0)

< -,IIsl (13)

Fig. 7 shows that this control action will always move the system towards the

boundary layer of the s=0 region. When s ispositive,the time derivative of s isnegative,

when s isnegative, the time derivative of s ispositive. The system will reach the region

within time constraints of the order of lfk where _.is the controller bandwidth. Once

inside the boundary layer region, the tracking error in position and velocity remains

bounded. The bounds on tracking error can be quantified in terms of modelling

uncertainty, maximum disturbance bounds, desired trajectory parameters and system

bandwidth. This relationship is called the "balance condition" and is discussed more in

®.

Figure 7. Sliding Mode Condition

The controllercomputes a set of two net control forces Fco,_ol,and F_o,_o_yand a net

control torque _o_ e. Then the currents are chosen to achieve this set of control actions.

Notice that the choice of a set of 6 control currents to achieve three control actions isnot

unique. We chose the straightforward approach of using only one actuator of a given pair

at a time. (For example ifactuator 1A is on actuator 1B isoff).This choice is acceptable
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as long as the current controllers are designed to switch fast enough for the types of

experimental tests to be run.

The net control force or torque for a particular degree of freedom has two

components. One component is chosen as ifthe system were on the s=O surface and the

control action is to stay on the surface. This part of the control action is derived by

making _=0 and using the system model equations of motion. There is a feedfoward term

and a term proportional to the velocity error. On the s=O, surface, this control action

brings the tracking error to zero exponentially. The second component of control force

or torque, the saturation function term, insures that ds2/dtwillremain decreasing outside

the s=O_.+$region in spite of disturbances and uncertainties ....

t*,JJ

(14)

In Eq. (14), the K terms are dependent on the modelling uncertainty and the disturbance

bounds. Also in, and I, are the assumed mass and moment of inertia respectively.

ARer the controller calculates the control forces and torque, it chooses a set of

currents to achieve those forces Eq. (15-17).

_controt o _ O:Fcon_ol • -
L.

_conta'olz --

'_contre_

Le

12B -- 0

-_<0:

L.

I_ =0

i2" = -(gis + Ci )l

(15)
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Fcontrol • + _controlS_ O"

L,

= control
÷

_eo_Woi 0

L8

lib = 0

Feonta.ol •

l_eonlzol 0
4-

L@

--<0:

IL_=0

Fcontr_ y _ O:

I
I3^ = | _ (g_ + C,) 2 Fco.t_l y

%.

I3B = 0

F_o._ol y < 0:

13^ = 0

!
i3B = | -2 (g3B + Cy )2 Fco.tro! y

%

(16)

(17)

CONTROIJ_R ANALYSIS

Comparison of sliding mode and conventional controllers For comparison, a

phase lead controller, typically used in magnetic suspension systems, was designed for the

test-bed. Additionally, since the sliding mode controller has the advantage of having

information about the desired trajectory which is used in a feedfoward path, a third

controller was designed consisting of a linear phase lead controller and a nonlinear

feedfoward term which utilized gap measurements and desired force. A block diagram of

this controller is shown in Fig. 8.
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Figure 8. Block Diagram of Phase Lead with Feedforward Controller

The sliding mode bandwidth parameter (_.) and the closed loop bandwidth of the

phase lead and phase lead with feedfoward were chosen to be 40 Hz. Simulations were

run for the test scenarios which include a large amplitude, low frequency slewing

maneuver and a small amplitude higher frequency angular disturbance. Performance

measures ofrms tracking error, stability margins and vibration disturbance attenuation

were examined. Additionally, robustness of the three types of controllers to a particular

type of modelling uncertainty was investigated.

Fig. 9 is a performance comparison plot of rms tracking error to a desired slew

maneuver vs vibration disturbance amplitude. Both tracking error and vibration

disturbance amplitude are normalized by the nominal gap. Perfect measurement and

estimation systems are assumed. The slew maneuver is a 1 cm 5 Hz sinusoid and the

vibration disturbance is an angular disturbance at 23 Hz. The magnitude of the angular

vibration disturbance can be found using small angle approximations. This plot shows

that the sliding mode controller has better tracking performance by two orders of

magnitude than the phase lead controller. At very small disturbance amplitudes, the

phase lead with feedfoward is comparable in tracking performance to the sliding mode

controller, but this performance deteriorates significantly with larger disturbance

amplitudes. Another interesting feature of this plot is that the sliding mode controller has

higher stability margins than the other control approaches. The stability margin is

reached when one or more of the magnetic gaps to go the zero. The plot shows that the

phase lead and phase lead with feedfoward can handle disturbances up to about 20% and

30% of the nominal gap. This sliding mode controller can handle disturbances that are

90% of the nominal gap. Furthermore, this particular sliding mode controller was only

designed to handle angular disturbances that were 50% of the nominal gap, the controller

could easily be designed for higher disturbances in order to achieve even higher stability

margins by trading off against tracking performance.

The ability of the sliding mode controller to operate near over the full range of it's

magnetic gap is another advantage over linear controllers. Linear controllers, which are
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Figure 9. Controller Performance Comparison

biased about an operating current, can only operate in a reduced gap range to avoid

attraction to one or the other biased actuator. The sliding mode controller has superior

stability range and start-up capabilities.
Another performance measure to assess the potential of the sliding mode controller

is vibration disturbance attenuation. This is a measure of how much disturbance energy

is transmitted to the tracking body. Figure 10 shows vibration disturbance attenuation

vs vibration disturbance frequency. The plot is again based on simulations a 1 cm 5 hz

slew and a angular vibration disturbance. The magnitude of the angular disturbance is

about .004 rad, which corresponds to approximately half the nominal gap when using

small angle approximations. Vibration disturbance attenuation is defined to be the ratio

in db of output angular disturbance energy to input angular disturbance energy. An

alternative measure is disturbance attenuation at the disturbance frequency. This would

be calculated by comparing the power spectral densities of the angular output response

and the angular input disturbance. However, unlike linear systems, a nonlinear system

can spread its response over the frequency domain. Due to this fact, the energy measure

of vibration disturbance attenuation is preferred because it is a broadband measurement.

The sliding mode controller achieves better disturbance attenuation than the phase

lead or the phase lead with feedfoward approaches. Performance at disturbance

frequencies near the closed loop bandwidth is of particular interest because in this
disturbance frequency range linear controllers have limited capability, as discussed

earlier. For these simulations, analysis (Eq. 1) indicated the limiting value of isolation

to be approximately -9 db for a phase lead controller. The plot shows that this limitation

is accurate. The sliding mode controller, because of its different structure, is not limited

to this performance value. It achieves about -40 db at disturbance frequencies near the

closed loop bandwidth, a 30 db improvement over linear controllers. Using the balance

condition, this isolation performance can be directly related to modelling accuracy,

bandwidth and sampling time of the sliding mode controller.

Although this plot shows the sliding mode control has better performance than the
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other approaches at low disturbance frequencies, improved linearized control approaches

can be designed by increasing the loop gain at low frequencies. This would result in a
controller which had better disturbance attenuation at low frequencies than the phase

lead and phase lead with feedfoward; however, it would still be limited at disturbance

frequencies near the closed loop bandwidth.
Robustness to modelling uncertainty is an important capability for any control

design. In the presence of parameter uncertainty, dynamic parameter variation, or model

structure uncertainty, a robust controller maintains a specified level of performance and

remains stable. For this type of actuator, the force proportionality to the current squared

is a very good approximation; however, the force dependence on the gap is more uncertain.

One reason for this modelling uncertainty is due to the curvature of the actuator target

surfaces. Curvature is useful because it reduces cross-coupling between axes, however,

it introduces a variation in gap. As discussed earlier, the force-gap-current models used

in Eq. 4-6, are accurate to within 1% for gaps which ranged from plus or minus 50% of the

nominal gap 7(!).
In order to investigate the effect of modelling uncertainty on controller performance

and stability, we varied the force-gap-current proportionality term used in the controller

models by plus or minus 10% of the value use in the plant simulation model. Fig. 11 is

a plot of rms tracking error (normalized by the nominal gap value) as a function of

modelling uncertainty in the force-gap-current proportionality term. The x axis is the

, ratio of the proportionality term used in the controller to the proportionality term used

in the plant simulation model. A value of one indicates the controller is using a perfect
model. These simulations were based on a 1 cm 5 hz sinusoidal slew in the presence of

a 23 Hz .004 radian sinusoidal angular disturbance. The sliding mode controller has

better tracking performance than the phase lead and the phase lead with feedfoward

controllers when the uncertainty in the proportionality term ranges to plus or minus ten

percent. However, these performance advantages are very sensitive to modelling

uncertainty. Good modelling is essential for performance improvements to be realized.
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Figure 11. Controller Robustness Comparison

The Effects of Discrete Time, Estimation Errors, and Measurement Errors.

Realistic factors which will decrease the attainable performance of the system

include effects due to the discrete time nature of the controller, finite word-length,

measurement system imperfections, and estimation errors. The stability of the sliding

mode controller with an estimation scheme has not been fully examined in the literature;

however, simulations indicated that estimators can be designed for this system that do

not seriously degrade performance or cause instability.

Controller currents are held constant over the sampling period. Additionally, due

to control law computation time, there is a time delay between measurement of sensor

data and control action. For this test-bed, the computation time is approximately 250

milliseconds. The sampling rate is 1000 Hz.

The measurement system errors include gap sensor nonlinearities and angular

velocity sensor dynamics. The LVDT dynamics are high frequency effects and thus are

neglected. The moving rails are under closed loop control and these effects are also

negligible. The effects of sensor noise is not presented in this paper; they are expected to

be negligible.

Fig. 12 shows a plot of the gap vs gap sensor voltage. The gap sensors were

Mechanical Technology Incorporated ASP-50-ILA units with greater than 1 mm 1% linear

range. The simulations used a third order fits to simulate the sensor. The estimation

schemes considered also used third order fits to obtain gap from gap voltage.

Fig. 13 is the angular velocity sensor magnitude response vs frequency. The

angular velocity sensor was an Applied Technology Associates magneto-hydrodynamic

angular rate sensor (.4). At low frequencies (less than .5 Hz), the angular velocity sensor

magnitude response falls off. In this frequency range, any estimation scheme must utilize

gap and LVDT rail measurements and the kinematic relations (Eq. 5-8).

The first estimation scheme presented here makes use of information from all of

the sensors. At low frequencies, the inertial sensors do not provide good information, so
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the gap sensors and LVDT measurements are used. The angular estimation filters have

been designed to utilize angular velocity sensor information all the way down to its

capacity at .5 Hz (Fig. 13). The angular position estimate uses mostly the low frequency

estimate based on gaps and LVDT's for frequencies under 2 Hz. For simpler

implementation, the x-axis filters in this particular estimator are using mostly low

frequency information for x estimates. Future work should make better use of the

accelerometer for inertial measurements; this requires low frequencies (compared to the

sampling rate) in the estimation filter to remove the dc bias and was not considered in

this phase of the work because of problems with implementation. Subsampling is one

option to alleviate these numerical problems.
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The first estimation scheme will not work in the testbed. The angular velocity

sensor has too much broadband noise to get good angular position and velocity estimates.

A second estimation scheme was designed which used only the gap and LVDT rail position

measurements. The kinematic relationships are used (Eq. 5-8) to get estimates of angular

and translational (x) position. The positions are then filtered to get velocity estimates.

Table 1 is based on a simulations of a 1 cm, 5 Hz slew with .0045 radian, 25 Hz

angular vibration disturbance. The sliding mode controller bandwidth parameter is 40

Hz. The table shows three measures of performance: normalized rms tracking error,

vibration disturbance attenuation at the vibration disturbance frequency, and broadband

vibration disturbance attenuation. The performance measures are best with a perfect

model, measurement system and estimation scheme. The rms tracking error is .16% of

nominal gap and the vibration disturbance attenuation measures -35 and -33.8 db

respectively. The effects due to modelling error are small. The effects of time delay

between measurement and control action degrade tracking performance by an order of

magnitude. Isolation performance is also reduced to about -30 db. The effect of

estimation errors degrade tracking performance by an order of magnitude and do not

significantly affect isolation performance. The second estimation scheme is tracking better

than the first for this particular controller design. The effects of imperfect measurements,

namely gap sensor nonlinearity and angular velocity sensor dynamics, also degrades

tracking and does not significantly degrade isolation performance.

The effect of the estimator becomes more important with higher bandwidth

controllers. For example, simulations of a 1 cm 5 Hz slew with a .0045 radian, 23 Hz

angular disturbance with 160 Hz. bandwidth controller were performed. The perfect

model, measurement and estimation case achieved -60 db of vibration isolation. The first

estimation scheme, which utilized the inertial sensors measurements, had a performance

reduction to -30 db of isolation when using perfect measurements. The second estimation

scheme, which utilized only gap and rail measurements, was not adequate and the

stability margin of the controller was reached.

HARDWARE RESULTS

To date, the testbed subcomponents have been tested and the testbed assembled

and functionally tested. The sliding mode control algorithms have been implemented with

a Texas Instruments TMS320-C25 digital signal processor coded directly in assembly

language. Preliminary closed-loop tests were performed with a high bandwidth (160 Hz)

controller in which the sliding mode control currents were reduced by a constant scaling
factor. This factor was introduced because the current drives need to be modified to

accept larger currents than originally specified.

Tests were performed in which the isolated mass was displaced by a full gap

displacement and the desired position was the nominal centered position. Figure 14

shows the results of these experimental tests and two simulations. The modified

simulation reflects the scaling of control currents and the gap sensor nonlinearity. The

"perfect" simulation assumes perfect model, perfect measurement, perfect estimation and

no current scaling factor. The rise time for the "perfect" simulation and for the

experimental test are both about .075 seconds. The modified simulation takes about twice

as long but reflects the oscillatory behavior about the final value. The modified simulation

is very sensitive to scaling factor and the gap sensor nonlinearity fit.
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TABLE 1.

The Effects of Discrete Time and Estimation Errors.

40 Hz Bandwidth Controller

1 cm 5 Hz slew

.0045 rad 25 Hz Disturbance

m

o
o

tH
tH

a 0

N )4 M

Modelling
Error

Discrete

Time

Estimation

Errors

Measure-

ment and

Estimation

Errors

Perfect Model

Perfect Measurements

Perfect Estimation

No Time Delay

1% Modelling Error

Perfect Measurements

Perfect Estimation

No Time Delay

Perfect Model

Perfect Measurements

Perfect Estimation

1/4 sampling period delay

(.0025 sec)

Perfect Model

Perfect Measurement

No Time Delay
Estimator 1

Estimator 2

Perfect Model

Imperfect Measurement

No Time Delay
Estimator 1

Estimator 2

.0016 -35.0 -33.8

.002 -34.9 -33.7

.05 -29.9 -28.6

.06 -34.9 -33.7

.03 -34.1 -32.9

.06 -33.5 -32.5

.03 -32. -29.7
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Figure 14. Initial Offset Test

Additionally, slew and angular vibration isolation tests with the hardware were

performed for a 2.5 mm 1 Hz slew and single frequency angular disturbances ranging

form .0009 to .003 radians up to 30 Hz. Vibration isolation measures of ranging from -23

to -36 db were observed for this range of disturbances. Simulation results were in the

same range; however, they are very sensitive to the gap sensor nonlinearity which is not

precisely known for the experimental tests that were run. After testbed modifications,

we have since measured the gap sensor nonlinearity. Simulations presented earlier

incorporate this nonlinearity. The next step in hardware verification is to increase the

current drive capabilities. This will allow experimental comparisons to the simulations

presented in this paper.

CONCLUSIONS AND RECOMMENDATIONS

Control algorithm development and system simulations have shown that sliding

mode control is an attractive approach to providing precision tracking in the presence of

disturbance vibrations. The sliding mode controller has a number of advantages over

conventional designs. Most important is improved performance. For this testbed, the

sliding mode controller can increase the vibration isolation while slewing by 30 db

compared to a conventional control algorithm. Although controller performance

improvements are very sensitive to actuator modelling accuracy, high levels of modelling

accuracy can be achieved for aerospace applications by experimental testing.
Issues associated with the "real world" application of sliding mode control were

investigated. Perhaps the most important was the incorporation of a state estimator with

the sliding mode controller. System performance was depends on the quality of the
measurements and the estimation scheme. A number of other estimator designs are now

being investigated, including a linearized Kalman filter, extended (nonlinear) Kalrnan

filter, and sliding mode observers (L_._. Estimation errors become more important as
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the controller bandwidth is increased.
A laboratory testbed was designed and built and preliminary testing has been

performed. Further testing is ongoing.
Recommendations for future research are to apply sliding mode control to an

existing precision pointing and tracking application. This entails determining the
modelling accuracy and computational requirements to meet the vibration isolation
requirements of the particular application.
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